Exercise 1.10

The following conversions occur frequently in physics and are very useful. (a) Use $1 \mathrm{mi}=5280 \mathrm{ft}$ and $1 \mathrm{~h}=3600 \mathrm{~s}$ to convert 60 mph to units of ft / s. (b) The acceleration of a freely falling object is $32 \mathrm{ft} / \mathrm{s}^{2}$. Use $1 \mathrm{ft}=30.48 \mathrm{~cm}$ to express this acceleration in units of $\mathrm{m} / \mathrm{s}^{2}$. (c) The density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this density to units of $\mathrm{kg} / \mathrm{m}^{3}$.

Solution

Start from the given quantities and go from there.
Part (a)

Part (b)

$$
\frac{32 \mathrm{ft}}{1 \mathrm{~s}^{2}} \times \frac{30.48 \mathrm{~cm}}{1 \mathrm{ft}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \approx 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Part (c)

$$
1.0 \frac{\phi}{\mathrm{~cm}^{3}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=1.0 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

